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Admissibility of estimators in the one parameter

exponential family and in multivariate location problems

by

Dan A. Ralescu

ABSTRACT

We are concerned with problems related to admissibility and

minimaxity of estimators in the one parameter exponential family,

and with classes of estimators which improve upon the best invar-

iant estimator in multivariate location problems (dimensions p (' 3).

In connection with admissibility problems we give sufficient

conditions for the admissibility of nonlinear estimators

F (aX + b)/(cX + d) in estimating an arbitrary function g(e) with

iquadratic loss. ,More precisely, let X be a random variable with

probability density function fe(x) = O(8)eex with respect to

some a-finite measure v ; G 0 = r1 (: ) = feexd(x) < ca}

Sufficient conditions are obtained for the admissibility of non-

linear estimators of the form 6(X) = (aX + b)/(cX + d) for the

problem of estimating an arbitrary piecewise continuous, locally

integrable function g(O) with squared error loss.

Several applications of the main result are given and some

new nonlinear admissible estimators are discovered. In particular,

if X1 1X2 ..... Xn  is a sample from the exponential density

jtF



xe-Xxl(0,) (x) , ) > 0 , we show that (n - 2)/(X + k) is

admissible in estimating X , for every k 2 0 , where

n
X Xi.

~i=l

This problem is also studied for the case when the para-

meter space is truncated, that is, when 6 e 00 = {O :0 5 0 0

c , 00 being an interior point of 0 .

Problems related to minimaxity of linear estimators are

also investigated. If X has a density belonging to the

exponential family, we give sufficient conditions for the

minimaxity of estimators of the form aX + b in estimating

arbitrary differentiable function g(e)

In the multivariate case we concentrate on classes of

estimators which improve upon the best invariant estimator.

Let X be a p-dimensional random vector having a density of

the form f(x - 0) where 0 E R is a location parameter.

For p 3 , different classes of estimators 6(X) which are

uniformly better than the best invariant estimator 6 (X) = X

are obtained when the loss function is of the type

pL(O,6(x)) =il c. (0. - ,ix) .. where c I ,pare given

positive constants.

It is shown that 66 * . where 61 is an estimator

which improves upon 6
0  outside of a compact set, & is a suit-

able probability density in RP , and * denotes the convolution.

We give some examples of densities (such as truncated densities)

which generate estimators which improve upon 6 , and we also0L _ _ _ __ _ _ _
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CHAPTER 0

PRELIMINARIES

In this chapter we describe the general decision problem,

the concepts of admissibility and Minimaxity, some related back-

ground and the problems investigated in Part I of the thesis.

Let X be a random variable with distribution function

x

Fe O f 8 (t)djjpt)

depending on an unknown parameter 8 E 0 L R .The set 0

which is assumed known is the parameter space. The quantity

'f e(x) is the density of F 6(x) with respect to a a-finite

measure .An important problem in statistics is to estimate

e or a function g(e) of e on the basis of an observation
X (or series of observations) on F This is done by deter-

mining a rule which for each set of values of observations,

specifies what decision should be taken. Mathematically, such

a rule is a function 6 ,which to each possible value x of

X assigns a decision d =6(x) , that is, a function whose

domain is a set of values of X and whose range is a set of

possible decisions.

To see how 6 should be chosen one has to compare the con-

sequences of using different rules. Suppose that the consequence

of taking a decision d in estimating g(O) is a loss which can
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be expressed as a non-negative real number L(g(e), d) . Then

the long term average loss that would result from the use of

6 in a number of repetitions of the experiment is the expec-

tation E0[L(g(O),6(X))] evaluated under the assumption that

f0 is the true density of X . This expectation which depends

on the decision rule 6 and the density f is called the

risk function of 6 , and we shall denote it by R(g(O),6)

Thus

R(g(O),6) E0 [L(g(0),6(X))]

(0.2)

= L (g (6 ) 6 ( x) f 06 (x ) d il (x )

By basing the decision on the observations, the original

problem of choosing a decision d with the loss function

L(g(6),d) is thus replaced by choosing 6 with the average

loss R(g(), 6)

Ideally, one would like to select 6 which minimizes the

risk function (0.2) for all 0 E 0 . Unfortunately, in general

such "best" decision rules do not exist. So sometimes one is

led to considering restricted classes of decision procedures

which possess a certain degree of impartiality such as unbiased-

ness, invariance, minimax, Bayes', etc. in the hope that within

such a restricted class there may exist a procedure which is

uniformly best. However, there are situations in which there

exists a decision procedure 60 with uniformly minimum risk among

all invariant or unbiased procedures, but where there exists a
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procedure 6 , not possessing this impartiality property and

preferable to 60 (see, for example, Lehmann (1959), pages

24 and 26, problems 14 and 16). Thus the approaches based on

the principles of unbiasedness or invariance could be unreliable,

and for different reasons, the approaches based on the minimax

or Bayes principle could also be far from satisfactory. Thus,

as a first step, one considers the possibility of not insisting

on a unique solution but asking only how far a decision problem

can be reduced without loss of relevant information. This leads

to the concept of admissibility.

Definition 1. A decision procedure 60 is said to be inadmissible

if there exists another procedure 6 1 which dominates it in the

sense that

R(g(6),6 1 ) ! R(g(e),6 0 ) for all 0 E 0

(0.3)

R(g(O),6 1) < R(g(8),6 0) for at least one e E 0

6 is called admissible if no such dominating 61 exists.

Thus a decision procedure 60 can be eliminated from consider-

ation if there exists a procedure 61 which dominates it.

A class T of decision procedures is said to be complete

if for any 60 not in T , there exists a 61 in T which

dominates it.

The importance of admissible procedures lies in the fact

that under suitable assumptions on the loss function and the

density function, the admissible procedures form a complete class.
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In fact, if a minimal complete class exists, it consists exactly

of the totality of the admissible procedures (and consequently

there is no need to look outside this class to find an estimation

procedure, for one can just do as well inside the class). How-

ever, the general question of resolving the admissibility of all

estimates measured with respect to a suitable loss function (say,

a quadratic one - frequently used in practice) is intrinsically

difficult. One therefore concentrates on the investigation of

whether some of the commonly employed estimates are admissible.

one of the earliest papers in this direction is due to Hodges

and Lehmann (1951) who used the Cramdr-Rao inequality for the

variance of an estimator of the parameter 0to obtain a criter-

ion which implies the admissibility of point estimators when the

loss is proportional to the square of the error of the estimate.

Their method which involves the solution of a differential inequal-

ity, is applied to certain problems involving the binomial, Poisson,

normal, and chi square distributions, and the unique admissible

minimax estimator is obtained in each case. Simultaneously Girshick

and Savage (1951), while investigating related problems in relative-

ly greater generality, proved (among other results) that if the dis-

tribution of X belongs to a one parameter exponential family where

exfo(x) = 6(6)e , and if the loss function is the same as in Hodges

and Lehmann (1951), then X is an admissible (ninimax) estimator

of EeX Provided -- < 0 < Later Karlin (1958) proved an

interesting and surprising result - that for the exponential family

given above, aX for any a satisfying 0 < a !5 1 is an admis-
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sible estimator of E0 X whenever V possesses positive measure

in the regions x z 0 and x s 0 and 0 = (- ,c) . On the

other hand, for any a > 1 , aX is inadmissible. In view

of the fact that any contraction of X (aX, 0 < a 1 1) is

admissible, it seems surprising that in practice one always

uses the extreme estimate of this kind. The criterion of unbias-

edness traditionally has dominated the choice of an estimator

If the parameter space 0 of e is not the full infinite inter-

val, then the problem of admissibility of aX becomes quite

complicated. It becomes more so if e ranges over a finite

interval. In this case the analysis seems to depend on the rate

at which B(O) tends to 0 as 0 approaches its boundary. (For

details see Karlin (1958)).

Later Ping (1964) and Gupta (1966) gave sufficient conditions

for the admissibility of the estimators of the form aX + b for

the problem considered in Karlin cited above. More recently, Ghosh

and Meeden (1977) considered the problem of estimating a piece

wise continuous function y(8) , not necessary the mean, by an

estimator of the form a X + b , and provided sufficient conditions

for the admissibility of such estimators. All these papers deal

with linear or affine estimators. However, there are important

problems where the class of estimators studied include nonlinear

estimators. In particular, this is the case in estimating a func-

tion of the scale parameter in a Gamma density, or a function of the

variance in a normal density. The admissibility of particular

nonlinear estimators of the form c/X , where c is a constant,

has been studied by Ghosh and Singh (1970), in estimating the

_.. ... . . . .
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parameter of an exponential density. However, as of now, there

are no general results available dealing with non-linear estima-

tors which would apply to a broader class of densities.

In Chapter 1, Section 1.2 we give sufficient conditions for

the admissibility of nonlinear estimators of the form

6(X) = (aX + b)/(cX + d) , in estimating an arbitrary function

g(O) , with squared error loss. The results obtained include

the results of Karlin (1958), Ghosh and Singh (1970), and Ghosh

and Meeden (1977), among others.

As a Corollary, we give sufficient conditions for the admis-

sibility of estimators of the form 6(X) = c/X .

In Section 1.3 we give several examples of nonlinear admis-

sible estimators, especially in estimating a function of the scale

parameter in a Gamma or normal density. Some new admissible

estimators are discovered. A surprising example shows the "almost

inadmissibility" (in a sense to be made precise later) of the

commonly used estimator of the variance in a normal (0,0) den-

sity.

In Section 1.4 we extend the results of Katz (1961) and of

Ghosh and Meeden (1977) concerning admissibility when the para-

meter space is truncated. We derive admissible estimators of

the form (aX + b)/(cX + d) + 4(X) , where 4(X) is a "correc-

tion" due to the truncation.

The problem of admissibility is related to the problem of

finding minimax estimators. To define the latter concept, let

R(g(8),6) denote, as before, the risk associated with the esti-

mator 6(X), _ .MW
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An estimator 60 is called minimax, if:

(0.4) sup R(g(e),6 O ) = inf sup R(g(6),6)
OEO eOe

where the infimum is taken over all estimators 6(X) of g(e)

Intuitively, the minimax approach is to choose an estimator whicn

protects against the largest possible risk, when 6 varies over

0 . There is a considerable amount of published results on the

existence of minimax estimators; see especially Chapter 2 of

Wald (1950).

In the case of the one parameter exponential family, Ping

(1964) gave sufficient conditions for the minimaxity of affine

estimators of the form 6(X) = aX + b , in estimating the mean

g(e) = EsX , under the normalized squared error loss

(0.5) L(g(O),6(x)) = (e() - 6(x)) 2

var8X

where var0X is the variance of X .

In Chapter 2, Section 2.1, we generalize this result and we

give sufficient conditions for the minimaxity of LX + b in

estimating an arbitrary (differentiable) function g(O) when

the loss function is (0.5).

In Section 2.2 we give some new examples of minimax estima-

tors, in estimating a function g(6) different from the mean,

E X . The presence of affine minimax estimators arises especially

0I

L ! ........ ...
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in estimating a function of the scale parameter in a Gamma

density.

In Chapters 1 and 2, the observations are considered to

be random variables, and the parameter to be estimated is

one-dimensional.

In multivariate estimation problems, the situation changes

considerably. The standard example is when the observation

X = (XIX 2 ,...,X p) has a p-variate normal distribution with

mean a -and covariance matrix I (the p x p identityp

matrix).

It was a surprising result when Stein (1955) and, later,

James and Stein (1960) showed that, in dimensions p ? 3 , the

best invariant estimator 6(X) = X of a multivatiate normal

mean, is inadmissible. They found an estimator which strictly

dominates 6 More precisely, they proved that 6 is inad-

missible if and only if p 2 3

Since then, much work has been done in the direction of

proving inadmissibility of the best invariant estimator, for

estimation problems in a relatively general framework. Based

on results of Farrell (1964), many contributions to this sub-

ject were made by Brown ((1966),(1975)). In Brown (1978) a

heuristic approach is given to prove admissibility and inadmis-

sibility of estimators in a wide variety of multivariate problems.

The work of Stein and Brown suggest a new problem, namely

that of finding estimators which are better than the best invar-

iant estimator when sampling from a location parameter family.

In James and Stein (1960) estimators for the mean of a multi-
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variate normal distribution are given, which are better than

the best invariant estimator X , where X is an observation

of the distribution.

Baranchik (1964) found a larger class of estimators,

better than X , which include the James-Stein estimators.

Until 1974, estimators which were better than the best

invariant estimator were only available for the mean vector of

a multivariate normal distribution. Then, Strawderman (1974)

and Berger (1975) found minimax estimators which are better

than the best invariant estimators, when sampling from certain

spherically symmetric unimodal distributions. Later, more

results along these lines were obtained, by Brandwein and

Strawderman (1978), Brandwein (1979), and Brandwein and Straw-

derman (1980). Mainly, these results concentrated on describ-

ing classes of minimax estimators for the mean of a spherically

symmetric distribution, for various classes of loss functions,

more general than the quadratic loss.

However, estimators which improve upon the best invariant

estimator have been found only in the special cases of normal

and spherically symmetric distributions. In Chapter 3 we invest-

igate several types of estimators which improve upon the best

invariant estimator when the underlying distributions are not

necessarily normal or spherically symmetric and also when the

loss function is relatively more general than the quadratic one

(frequently considered in literature). We prove that (under

suitable assumptions) the convolution of an estimator 6 1 , which
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improves upon 6 outside of a compact set with a truncated
0

probability density in ]RP , gives an estimator 6 which

improves uniformly upon the best invariant estimator 6 0.

Different examples are given and, according to the con-

voluting density (such as spherically uniform, truncated densi-

ties, and others), different classes of estimators better than

60 are described.

In Section 3.3, we present some other new classes of esti-

mators which improve upon the best invariant estimator 6 0in

higher dimensions. The critical dimensions for which we have

improvement depends on the estimator we start with, and which

improves upon 6 0 outside of a compact set.

Finally, we also state some problems, which were not solved

in the present context, but which could be of further research

interest.

I7
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CHAPTER I

A CLASS OF NONLINEAR ADMISSIBLE ESTIMATORS

In this chapter we investigate the admissibility of non-linear

estimators of the form (aX + b)/(cX + d) in the one parameter

ee
exponential family fs(x) = B(e)e x , in estimating an arbitrary

function g(e) with quadratic loss. Particular cases of the

estimators of the form c/X are also studied and several examples

of nonlinear admissible estimators of the form (aX + b)/(cX + d)

and c/X are given. We also consider the problem of admissibility

when the parameter space is truncated and derive the admissible

estimators of the form (aX + b)/(cX + d) + O(X) , where O(X)

is a "correction" due to truncation.

Since our problem originates from Karlin (1958) who studied

the admissibility of linear estimators of the form aX in estimat-

ing the mean E eX of the one parameter exponential family, and

since our results also include those of Ghosh and Meeden (1977),

we state the main theorems of Karlin (1958) and, Ghosh and Meeden

(1977) in Section 1.1 for appropriate background. In Section 1.2

we present the main theorem dealing with the admissibility of non-

linear estimators of the form (aX + b)/(cX + d) in estimating

an arbitrary function g(O) with quadratic loss. As a corollary

we give sufficient conditions for the admissibility of the estima-

tors of the form c/X . In Section 1.3 we give several examples

4r
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of nonlinear admissible estimators of the form (aX + b)/(cX + d)

and c/X . These examples come especially from estimating a

function g(X) in an exponential distribution Xe- XX I (x) and

g(cy ) in a normal density N(o,0) . We also give an example

showing the "almost inadmissibility" of the parameter commonly

used in estimating the variance in the normal density N(o,o 2

In section 1.4 we derive admissible estimators of the form

(aX + b)/(cX + d) + (X (where O(x) is a "correction") in the

case when the parameter space is truncated.

i.i. Admissibility of linear estimators

In this section we give for the ease of convenience and appro-

priate background the main result of Karlin (1958) from where our

problem originated. Let the random variable X be distributed

according to the probability density

(1.1) dF (x) = (O)eSxdp(x)

where is a a-finite measure defined on the real line, e is

an unknown parameter, and we assume that e E e , where

(1.2) 0 = c 3 ex d1 j (x) <1

Since 0 is a convex subset of R , it is an interval of the

real line. Let e and e be the upper and lower end points of

0 , respectively. Karlin (1958) considered the problem of esti-

mating g(e) = EeX from a single observation X and derived
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sufficient conditions for the admissibility of linear estimators

of the form 6(X) = aX, a 0 in estimating g(8) (= EeX) when

the loss function is of the form

(1.3) L(g(e),6(x)) = (g(O) - 6x))2  I
(It may be mentioned that there is no i-o. of generality in

restricting to the case of a single observation because a sufficient

statistic for n independent observations from a member of the

exponential family (1.1) is the sum of the observations whose dis-

tribution is also a member of the exponential family (1.1). (See

Blackwell and Girshick (1954, p. 221)). Precisely, Karlin (1958)

proved the following theorem.

OX
Theorem 1.1. (Karlin). Let fW(x) = W(0)e , 0 e 0 be the

exponential family of densities with respect to a measure V . If

(1.4) ] a-A(0)d + as b
c

and

(1.5) fa ) M +e as a + ,

where c is an interior point of 0 = (e,;) , then

6 0 (X) = X/(X + 1) is an admissible estimator of g(e) = E X

Mcre recently, Ghosh and Meeden (1977) gave sufficient con-

ditions for the admissibility of affine estimators 6(X) = aX + b ,

nm



14.

a O 0 in estimating an arbitrary piecewise continuous, locally

integrable function g(e) with the quadratic loss (1.3).

Specifically, Ghosh and Meeden proved the following theorem.

Theorem 1.2. (Ghosh and Meeden). Let fe(x) be as given in

Theorem 1.1. Let

(1.6) f(e) = 8(O) exp [a- g(t)dt bal

where a is an interior point of 0 If

and

(1.8) J (0)dO + as a 6 ,
a

where c is an interior point of 0 = (O,6) , then 6 (X) = aX + b
0

is an admissible estimator of g(e) (where g(e) is an arbitrary,

piecewise continuous locally integrable function) when the loss

function is given by (1.3).

These sufficient conditions describe the tail behavior of some

improper prior distribution.

Although not studied in the present context, an important prob-

lem is related to the converse of Theorem 1.1. More precisely, are

L7 __..._I _
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these conditions for admissibility also necessary?

In Karlin (1958) it was shown that if one of the integrals

in Theorem 1.1 is convergent, then the corresponding estimator

60 is inadmissible, outside of a closed interval. Although

some progress was made later, the complete answer is still un-

known.

1.2. Admissibility of (aX + b)/(cX + d)

In this section we consider the problem of estimating a

function g(O) which is piecewise continuous; further restric-

tions will be imposed later on g . To this end we first write

(aX + b)/(cX + d) as a formal Bayes estimator, with respect to

some (generally improper) prior distribution. For more details

of this kind of approach, see Zidek (1970).

If 7() is the Radon-Nikodym derivative of the prior dis-

tribution with respect to the Lebesgue measure, we can write

g(0) a (8)e ex 7(e) dO

(1.9) aX + b
cX + d f Ox

e (O)1T (0) dO

Integrating by parts, we get

(1.10)

-a (e)ex ( ) dO+b eOrdO = -c fgOr)' e ex dO + df $e Ox dO

and, by the uniqueness of the Laplace transform:
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(1.Ii) -a(an) ' + b(Tr) = -c(gaf) ' + d(gT) .

To solve the above differential equation, we can write, after

some simple calculations:

(1.12) (log ) ' = b (log Icg - a)'
cg - a

For simplicity, in the above formulas, we have suppressed the

argument in denoting functions.

The differential equation (1.12) has the solution:

1 r8 _ _ _) -
(1.13) r(e) = 3() Icg(Q) - al exp dg(t) - b dt

Icg~e - a J cg(t) - a

where a is an interior point of e .

We mention that the calculation above should be merely viewed

as heuristic, with the goal of deriving the expression (1.13) for

the prior n .

Throughout the remaining of this Chapter, we make the follow-

ing assumptions:

(Al) cg(O) - a > 0 , for all 0 e 0

v

(A2) dg(t) - b dt exists, for any [uv) c e
f2 cg(t) - au (cx+

00 eSx

(A3) dU(x) < , for all 0 c 0
(cx + d)

The main result giving sufficient conditions for admissibility
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is contained in the following.

Theorem 1.3. Let the density of X be fe(x) = (e)eex and let

6,U be the endpoints of 0 . Suppose that conditions (Al)

through (A3) are satisfied. Denote by

00

(1.14) a() = 7() () (cg() - a) 2 f eex

- (cx + d)2  di(x)

where 7(e) is Qiven by (1.13).

if

(1.15) lim j-i()d = O lim G- l()d=

u u

then 6 0 (X) = (aX + b)/(cX + d) is admissible in estimating

g(B) with quadratic loss.

Proof: Suppose that (aX + b)/(cX + d) is not admissible;

then there exists an estimator 6 , such that

00 00(.6f(()- 2f f ax +b 2f

(1.16) (x) - g(e)) fe(x)di(x) (ax + d g(e)) 2 f(x)d(x)

for all e E 0 and with strict inequality for at least one

We will show that 6(x) = ax + b a e. (with respect to U
cx + d

First, a simple calculation shows that (1.16) is equivalent

to:



18.

(6) ax + d fo(x) dii(x)

(1.17)

2 ax + b - (x))ax + b (o)) d(x)-< 2 cx + d (x + d g f(x)

Multiplying both sides by 7 (given by (1.13)), integrating

over [u,v] c 0 , and using Fubini's theorem, we get:

r Ef (6 (x ax + b 2 eOx

cx ~ - + d )  (O) e dii(x)]hr(O) do

(1.18) 0 v

2 ax + b - 6(x)) ax + b O x (OdSld(x)J cx + d fu cx + d e(n))8ded e ~x

By using (1.13) and assumption (Al), the inner integral in

the right hand side of (1.18) can be simplified as follows:

(1.19)
vI ax + b - Oa x r()d

fu cx + d g(O))8(O) e w(0) do

v e

(ax + b g ()) exp{ox + dgl t ) - b dt} do
cx + u (cg(o) - a) f cg t) - a

v 8

1 + u cg() - a fa cg(t)(cx + d)g(8) - (ax + b) exp{Sx + dg(t) - b dt} do

v
1 r a _ _d() t}d

- cx + d exp {ox + dg(t) - b do
cx J do J cg(t) - a

u a
(cont.)

orI
. a....i,
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u

exp {ux + r dg(t) - b dt}

cx + d J cg(t) - a

- exp {vx + dg(t) - b dt}JO cg(t) -a

Denote by T(O) = C (6(x) ax + b 2 (eex dj(x)4 cx + d 
) 88 ~ x

it is enough to show that T(80) = 0 , for some 0

By using (1.18), (1.19), and the Schwarz inequality, we

get

V

vT (O) ( ) d8

00u

2 f ax + b 6(x)) 1 {exp(ux + ( - dt)cx + d cx + d cg(t) - a

-~fa

v
dg(t) - b dt)} dv(x)

(1.20) exp (vx + cg(t) - a

52T( e ux d ) e ( dg(t) - b dt)2T(u)~ 2- ( u.) _.. (cx + d) 
2  d x a x cg(t) a

f(c x ) (f c dg t ) - ba

0V.

2T (v)- (v) e Vx d x W exp dg(t) - dt =

e cg(t) - a

(cant.)



20.

= 2 T (u) r(u)(u) (cg(u) - a)( ( e 2

(cx + d)2

+ 27 v v T()(g()- Ja) x-- 2i Wpx
f (cx +d)

Let us consider the following cases:

Case 1: lim inf 7 (v) T (v) s (v) (cg (v) - a)( 2 d(x) > 0
v - 'f (cx + d)

By using this and (1.20), we get:

v

M(v) = r T(0)it(e)d <. Ki(v)TI(v)6 (v) (cg(v) - a)

(1.21)

X (f e d) 2 d(x))
(CX + d)2

for v in some neighborhood V of 8 , and where K is a

generic constant, possibly depending on u , whose exact value

plays no role in the subsequent analysis. Then

(1.22) M(v) 5 ([M (v) lv)]h 1v)(cg(v) a)( e 2 d1 (x))f(cx + d)

Lh
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which can be written as:

(1.23) M (v) 1

( (v) Kr(v) $(v) (cg(v) - 22  e dp(x)J(cx + d)2

Choose v I , v2 E V ,v 1 < V 2 , and assume M(v1 ) > 0 Then

v 2

1 1 _ M(v) dv
M(Vl) M(v2 ) f M 2 (v)

v1

(1.24)

v 2

1 dv 2 vx

v I K (v) (v) (cg(v) - a) 2( cx 2 d) (x)
+~xI d)2

Since the left-hand side is bounded by [M(v)] , and the

right-hand side equals K-if -1(v)dv (where a is given

by (1.14)), we get a contradiction, by letting v2 * and

using the first part of the hypoLhesis (1.15).

Case 2: lim inf 7(v)T (vB81(v)(cg(v) a) ( evx du(x)) 0
_____ () (cgcv + d)

Then, by using Fatou's lemma, we get
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f T() T(e)do < 27(u) T (U)2(u)(cg(u) - a)
u

(1.25)

S (cx_- d2 Ix))( x+ d )2

If we denote by N(u) = T(e)O e)do , we can write
fu

(1.26) N2 (u) !5 4(-N'(u)) r(u)(u) (cg(u) - )2 eUX i(x)(cx + d)2d(x.

Thus:

-N" (u)1

(1.27) 2N(u) 2w U
( 7 N2(u) - 4iT(u) (u) (cg(u) - a) 2 (f eUX d(cx + d) 2dl)

If N(u0) = 0 for some u0 , then T(e)h(O) = 0 a.e. on

[u0 1 ] ; therefore T(60 ) 0 for some 60 , and we are done.

If we assume N(u) 3 0 for any u , then, by using the same

argument as in Case 1, and the second half of the hypothesis

(1.15), we are led to a contradiction. This ends the proof.

Remark, The assumption (Al) can be replaced throughout by

cg(e) - a < 0 , for all 0 c 0 .

Observe that Theorem 1.3 includes Theorem 1.1 of Karlin

(1958), if we take b = c = 0 , d = 1 , and

g(e) E) To obtain Theorem 1.2 of Ghosh and
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Meeden (1977), take c = 0 , d = 1

As a particular case of our theorem, we give sufficient

conditions for the admissibility of nonlinear estimators of the

form c/X

Corollary 1.1. Suppose that g(e) > 0 for all e c 0fw
Jdte Ox( exists for any [u,v] c 0 , and - dP(x) < .

If OD

(1.28) lim d(x)] exp(c dt) dO =
v f u 00x I

and v eOx ]-I i

eexJ t)d
(1.29) lim [g() d i(x) I exp(c g dt) do co

then 60 (X) = c/X is admissible in estimating g(O) with quadratic

loss.

Remark. The hypotheses in the Corollary above can also be expressed

in the following, equivalent form: g(e) is positive, l/g(G) is

locally integrable in 0 , and E0 (X
- ) <

1.3. Examples of nonlinear admissible estimators

The examples to be presented here are related to the estimation

of a function of the scale parameter in a Gamma density. Examples

1 and 2 are concerned with estimating a function of the parameter

I_
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in an exponential density. A new estimator is presented in

Example 2. Example 3 is concerned with the estimation of the

2reciprocal of the variance in an N(0,a 2 ) density. Example

4 is related to the estimation of the variance in an N(O,o )

density. This example shows that the admissible estimator com-

monly used to estimate a2  is "almost inadmissible" (in a sense

to be made more precise below). In Example 6 we find admissible

estimators of the most general form (aX + b)/(cX + d) , again

in the case of an exponential density.

Example 1. Suppose that X1 , X2 , . Xn are independent and

identically distributed random variables with exponential density

Xe- X x 1(0,-) (x) , where X > 0 . We want to estimate g(X) = X

n
Since X = [ X. is a sufficient statistic for X , we cani=l 2.

consider only estimators based on X . The density of X is Gamma,

of the form

Xn n- -XX
(1.30) fA(x) = F~)x e I (0,)

By changing the parameter into e = -X , we get:

(1.31) fo(x) = (-6)n xn-l ex I (x)

(r(n) (0,-)

and we estimate g(0) = -.

It is easy to see that conditions (1.28) and (1.29) of

Corollary 1.1 are satisfied for c = n - 2 . Thus, if n t 3

the estimator (n-2)/X is admissible in estimating X . This is
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a well-known result (see Ghosh and Singh (1970)).

Example 2. Consider again Xl,...,Xn iid with density

Xe- x 1(0,X ) (x) , X > 0 . We want to estimate g(X) = A

n
It iseasy to see that if X = X. ,the estimator

F i=l

(n-2)/(X+k) is admissible in estimating X , for any k - 0

This result does not seem to be known. Of course, Example

1 is a particular case, for k = 0 .

Also note that the estimators (n-2)/(X+k) , k ) 0 , and

(n-2)/X are not equivalent (i.e., the risk of (n-2)/(X+k)

depends on k ) , and, therefore, at some points X > 0 , it

is possible to improve upon the risk of (n-2)/X

Example 3. In this example we consider XlX2,...,X n normally

2distributed with mean 0 and variance a > 0 . The function

to be estimated is 1/a

Since the statistic X = 2 is sufficient for c 2
i=1 1

our admissible estimator will be a function of X

n 2 2
It is well-known that ( X )/o2 is distributed as Xn

If we denote by = - 1 2 then e < 0 and the density of X
2a

is

(_e)n/2  ex n/2-1(1.32) f(x) =  (n/2) e x I (0,(x)

i
.. . . l-i.. .t~ii Ii7 ,- l i - . . . . 1 1i Ik i . . . . . . il . . . . . ll i 

o
- . .i . . .
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Also g(O) = -26 > 0 . In looking for an admissible

estimator of the form c/X , it is easily seen that conditions

(1.28), (1.29) are satisfied for c = n-4
n

Thus, if n > 5 , the estimator (n-4)/(y X2 ) is admis-
i=l

sible in estimating I/o2  in sampling from an N(0,a 2 ) density.

Example 4. Let us consider again Xl , X2 ., X iid with den-

sity N(0,r 2) and we want to estimate g(a2 =2a

n 2

If X = , it is well-known that X/(n+2) is admis-
i=l 22

sible in estimating a (this can be deduced easily, for example,

by using Karlin's theorem 1.1).

By applying Theorem 1.3 (or, directly, Theorem 1.2), we see
2

that (X + k)/(n + 2) is admissible in estimating a , for

every k ! 0.

We have here a surprising property, showing that even if

X/(n+2) is admissible, we can strictly improve upon its risk,

on "almost" the whole parameter space. In this sense we say

that X/(n+2) is "almost inadmissible".

To make this discussion more precise, let us denote by

X+kY k =n+ 2 , k >_0.

The risk of Yk (with quadratic loss) can easily be computed

2 k 2 -4a 2 k + 2(n + 2)a 4

(1.33) R(Yk,a (n + 2)2

(n + 2)
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The risk of the classical estimator Y is
0 n+2 i

2 2c 4
R(Y0 2= n + 2

Therefore R(Yk,a2 ) < R(Y0 ,o2) , a 2 > k/4 Roughly

speaking, if k goes to 0 , then the set on which

R(Yko 2 ) < R(Y0 ,oa will "approach" the whole parameter space

2
For large values of c ' k improves substantially upon

Y0 Also, since

(1.34) R (Y0 o 2) _ R (Y k , 2 )  k (k - 4 a 2 > -

(n + 2) (n + 2)

it follows that, for a2 < k/4 , 0 does better than Yk

but the improvement is very small (for small k

Thus X/(n+2) is "almost inadmissible", in this sense.

Example 5. Suppose that X1, X2 r,... Xn  is a sample from the
Gamma density: xC- I e - x  where a > 0 is

7( 0 ,)(x)

known, and 8 > 0 is unknown.

We want to estimate g(8) = 8
n

Since X = X. is sufficient for 8 and the density of
i=l

X is also Gamma with parameters na and a , by using the same

technique as in Example 1, we find that (no - 2)/X is admissible

for estimating 8

If a = m (an integer) and n = 1 , we get the estimator

(m - 2)/X obtained by Ghosh and Singh (1970).
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Example 6. In this example, we consider again Xl, X2 ,.... Xn

iid with exponential density Xe-Xx I( 0 0 ) (x) X > 0 , and

+ I
we want to estimate g(A) = +

We shall find here two admissible estimators which have

the most general form (aX + b)/(cX + d) , with a, b, c, d # 0
n

We denote again by X = [ Xi , 0 = -X . The density of X is
i=l1

+1

given by (1.31) and g(e) 0+-

We claim that if n 3 , the estimators

(1.35) 1 - X/(n - 1)
I + X/(n-l)

(1.36) 1 - X/(n - 2)

are both admissible in estimating g(O) with quadratic loss.

It is easy to see that assumptions (Al) through (A3) are

satisfied. Consider the estimator (1.35), and the integral:

(1.37) e e 2dvj(x) ex n-1

(cx + d) 2  (x + n - 2 x dx

Clearly,

(1.38) e xn- xn-3eOx dx r(n -2)

fl(0J (x + n 1)2 J 0 )n 2

_ -e

- I i
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By using this inequality, it is easy to show that the hypo-

theses of theorem 1.3 are satisfied.

The estimator (1.36) is handled in a similar way.

1.4. Truncated parameter space

Here we give an explicit formula for an admissible estimator,

in the case of truncated parameter space.

Instead of the natural parameter space 0 , we consider a

subset of it , 00 S 0 • The rationale is that we consider, on

some a priori grounds, that the unknown parameter e is restric-

ted to belong to 0 .

An estimator 60 of g(e) is called 0 0-inadmissible, if

there exists another estimator 61 of g(e) , such that

(1.39) R(g(8),6 I) 1 R(g(e), 0) for every 0 c 00

(1.40) R(g(0 0),61 ) < R(g(e 0 ),60) for some 00 C 00

An estimator 60 is called 0 0-admissible if it is not

00 -inadmissible.

In general, there is no relation between 0 0-admissibility

and admissibility. In particular, an admissible estimator need

not be 0 0 -admissible.

We shall consider here the particular case when

0 = {0 !5a 00 c 0 , where 80 is supposed to be known.
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Recall that X is an observation from the one parameter

exponential density.

The idea in finding a 0 0-admissible estimator, is to use

the same prior ii(i) given by (1.13) and to compute the gen-

eralized Bayes estimator. A simple calculation gives:

0 0
eOx 1()d6g()B()exOx d

( 1 .4 1 ) 6 ( x ) f- 0 g)0e 
e Xd

6(O)e x T(O)dO Ox)(8d
fo0 e)x T(6 Of a() ex T(e)dO

By using the expression (1.13) of n(8) we get:

6 0
exp(0 + dg(t) - b dt

(1.42 6(X) aX +xp+ ( 0  fj cg(t) -a

cX + d e(1.42) 6(X) = aX + bd dte

0 exp(eX + dg(t) - b dt)0 f cg(t) - a

(cX + d de
f cg(O) - a

In obtaining formula (1.42), we need the following fact, which

is easy to prove: if f c L 1IR) , f is absolutely continuous on

any interval of R , and f' c L1IOR) . then lim f(x) = 0

In our case, the function

8dg(t) - b d

(1.43) f(e) = exp(Ox + gt) dt)

fa gt a

7,4
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satisfies these assumptions, since we assumed that the quotient

in the right-hand side of (1.9) exists.

We can now give sufficient conditions for the 0 0-admissi-

bility of the estimator 6(X) given by (1.42):

Theorem 1.4. Suppose, with the notations of Theorem 1.3, that

v

(1.44) lim CY a- (8)de =u *O- fu

Then the estimator 6(X) given by (1.42) is 0 0-admissible in

estimating g(e) with quadratic loss.

The proof is similar to that of Theorem 1.3 and will be omitted.

Note that in proving the 0 0-admissibility of 6(X) , only the

second condition in (1.15) is needed, due to the truncation of the

parameter space.

Theorem 1.4 generalizes a theorem of Katz (1961) and it is

also a generalization of the corresponding result of Ghosh and

Meeden (1977), who found 00-admissible estimators of the form

aX + b + O(X) (where p(X) is the "correction" due to the

truncation).

In the following, we give an example of admissible estimators

in truncated case, when sampling from an exponential density:

Example. Consider XI X2,..., Xn iid with exponential density

Ie- I (x) where X > 0
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For the natural parameter space 0 (0,-) , the estimator

(n - 2)/X is admissible in estimating g(X) = , as in Example

1 of Section 1.3.

Suppose that we know that X _> 1 and we want to estimate

the same function g(X) = X

Then it is easy to see that the condition of Theorem 1.4 is

satisfied, and the corresponding estimator given by (1.42) is

(1,co) -admissible.

A simple calculation gives:

(1.45) 6(X) n-2 + en- 3  -tX -1

S(Xe e dt)

An explicit formula for this estimator can be gixvn by using

- k k a aa k
(1.46)f y eY dy = (-1) k! e- ll + - + ... + -J

We finally obtain

(1.47) 6(X) 2 +n-3/(n - 3)!(147 I(X + X2 ++
1 + X/l! + X2/2! + ... + xn/(n - 3)!

In the particular case n = 3 (i.e., there are three obser-

vations Xl, X 2, X3) , we get:

* ,,
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1
(1.48) 6(X) = + 1

It is easy to compute the risk of this estimator:

(1.49) R(X,6) = 2 _ 2X + 2
2

The risk of 60 (X) = 1/X (which is admissible in the non-

truncated case and n = 3) is

(1.50) R(X,60) = x2/2

We observe that R(X,6) < R(X,6 0 for X > 1 . This shows,

among other things, that 60 is inadmissible for the truncated
p0
problem.
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CHAPTER 2

LINEAR MINIMAX ESTIMATORS

The minimax principle for estimation problems can be stated

as follows. Let 6 be an estimator of a function g(6) , and

let R(g(8),6) be the corresponding risk function. An esti-

mator 60 is called minimax if

(2.1) sup R(g(e),6 0 ) = inf sup R(g(6),6)
OE0 6EV eE0

where D denotes the set of all estimators.

Intuitively, a minimax estimator is one which minimizes

the largest possible risk. One can also say that a minimax

estimator is a Bayes estimator against a prior distribution on

0 , which is least favorable for the estimation problem (see

Zacks (1971), Chapter 6).

There are many relationships between minimax and admissible

estimators. For example, if 60 is admissible and has a con-
4

stant risk, then 60 is minimax.

In this chapter, we give sufficient conditions for the mini-

maxity of the classical estimator 60 (X) = X , in estimating an

arbitrary (differentiable) function g(6) . Our results general-

ize those of Ping (1964), who gave sufficient conditions for

" iiii l Il I ~l~nm- -mm/ m . . . . . .. . .... .. .... -
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the minimaxity of affine estimators of the form (X + kX)/(l + X)

A > -1 in estimating the mean E aX = m(O)

The fact that we find conditions for the minimaxity of the

usual estimator 6(X) = X , and we do not consider affine esti-

mators of the most general form aX + b , causes no loss in

generality, and is explained in Section 2.1.

Recall that X denotes a random variable, whose probability

density (with respect to a a-finite measure) belongs to the one

ex
parameter exponential family: fe(x) = 8(6) e . As in Chapter

1 , e and 8 denote the endpoints of the natural parameter

space 0 .

In estimating an arbitrary function g(6) , the loss function

which will be considered in this chapter has the form:

2
(2.2) L(6(x) , g(0) - (6(x) - ( ))

2

where a (0) = Var0 X = E (X - X)

Note that, since the density of X belongs to the exponen-

tial family, we have a 2(0) = m'(0) , where m(e) = EsX .

The choice of the normalized loss (2.2) is especially desir-

able in those problems for which, when the loss is squared error,

the minimax risk is infinite. When this happens, any estimator

is minimax and the minimax principle provides no basis for choice.

In Section 2.1 we give the sufficient condition for mini-

maxity. The proof of Theorem 2.1 uses the Cramer-Rao inequality.

In Section 2.2 we give some examples. While Theorem 2.1

includes many of the classical minimax estimators, we concentrate
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on two examples where the function to be estimated is different

from the mean. The presence of linear minimax estimators arises

especially in estimating a function of the scale parameter in a

Gamma density.

2.1. Minimaxity of X

Let g(e) be a function of an unknown parameter e . Later,

further restrictions will be imposed on g . The risk in esti-

mating g(e) by 6(X) with the loss (2.2) is

(2.3) R(6 (X) ,g(O)) = E0 {L( 6 (X) ,g(e) ) def R(6 (X) ,e)

The following linearity property of minimax estimators is

easy to prove: 6(X) is minimax in estimating g(e) if and only

if a6(X) + b is minimax in estimating ag(e) + b (a,b 45 3R

a 3 0)

Because of this fact, we only need to give sufficient con-

ditions for the minimaxity of X in estimating g(6) , rather

than consider more general estimators of the form aX + b

Theorem 2.1. Let X have density fe(x) = 6(0) eOx , and let

g(e) be a differentiable function of 0 . Denote the endpoints

of 0 by t_ and T , respectively. Suppose that the following

conditions are satisfied:

*t
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sup (g(e) - M(e)) 2 lir (g(e) - m(O))2
8c 0 2 (9) 0 2 (6)

(ii) lim inf -l(8)OW(O) exp ( g(t)dt) > 0

(iii) lim (t) exp g(s) ds) dt =

where a E Int E

Then X is minimax in estimating g(6) with loss (2.2).

Proof: We shall use the Cram6r-Rao inequality. If 6 (X) is an

estimator of g(e) with bias function b6 (0) = E0(6(X)) - g(e) ,

then

Var6 () (b' (e) + g' (0)) 2

(2.4) Var 6(X) )
rX

where IX() = E (To log f 0 (X)) .

From (2.4), since IX(8 ) = a2() for the exponential family,

we get

(2.5) R(6(X),g(O)) > 2 b2  (b'(e) + g'(6))

a (e) a (6)

For the rest of the proof, for simplicity, we suppress the

variables in denoting functions.
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Suppose that X is not minimax, i.e.,

(2.6.) sup R(X,8) > inf sup R(6(X),O)
a 6 0

First, note that the risk of X is given by

2=1+(g(8)-m()

(2.7) R(X,0) 2 1 +
a (0)

Thus, from (2.5), (2.6), and (2.7), there exists an E > 0 and

an estimator 6 such that

(2.8) 1 b 2  + (b' + g) 2  (g(e) -
2 ]<1 + sup ()

a 2a 2 a (e)

Let K=sup 2 , and let0 a (0)

(2.9) u(O) = b(O) + (g(e) - m(e))

Since b' + g' = m' + u' , (2.9) becomes

(2.10) u2 + (g - M)2 2(g - m)u + ( 2 < (1 + K -

We now relax the inequality (2.10)( i.e., neglect the term

u'2 ) to obtain (note that m' = 2):

(2.11) u 2  2(g - m)u + 2u' < _c2 + { (g - m)a2
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By using the assumption (i), there exists a point0E0

such that for all 0< we have K- (gm 2 2 Thus:

(2.12) u 2 _2(g - m)u + 2u' < E_ ~2

for all 0>6

Define a new function v = x -1 g(t) dt) u. Then,

after some calculations, (2.12) simplifies to

(2.13) 2 exp (2'g(t) dt) v2 + 2aexp f g(t)dt)v' < CF2

which can be written as

j(2.14) expf g(t)dt)v 2 + 2vI < a 2 -lexp(f g(t)dt)

for all e > 0 1

Now, by (ii), there exists a constant c > 0 and a point

I such that for all 0 > 0 we have 1 lr exp(f g(t)dt) > c

Then, for e > e I = max(011 01) , we have by (2.14):.

(2.15) aexp Jag(t)dt)v 2 + 2v' < - L c 2 aexpf g(t)dt)

___fa_ _ 2 f

~fz.7w
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Note that v' < 0 for e > 01 ,i.e., v decreases for

0 > 0" , and so lim v(8) exists. We get
e-e.
2 Ec2  _i

(2.16) 2v' [V 2 + -1 < -B exp g(t)dt)

(a

for all 0 > e"

Integrating both sides of (2.16), we obtain

(2.17) f tan- I ( ) a(t) exp g(s)ds) dt
C1e C a

Letting : e , the right-hand side of (2.17) approaches

by assumption (iii) , while the left-hand side is finite. This

contradiction ends the proof of the theorem.

Remarks. (a) If we let h = g (J m (
(a

d -1(e) , where d is a positive constant, Theorem 2.1 can be

restated as follows:

Assume

(i)' sup h2 (e) = lim h2 (0) <
0

(ii)' lim inf a exp( ah(t)dt) > 0
efa

(iii)'f exp(f oh(t)dt)d=



41.

Then X is minimax in estimating ch + m with loss (2.2).

If h = 0 , and 0 = , then Theorem 2.1 takes a very

simple form:

If

(2.18) lim inf a2(6) > 0 or lim inf a2(6) > 0

then X is minimax in estimating m(e)

Indeed, in this case (i)' and (iii) ' are obviously satisfied,

while (ii) (or its dual form) becomes (2.18) above.

We point out, however, that this condition (ii)' , while

being sufficient, is not necessary for the minimaxity of X

Indeed, consider a random variable X whose distribution is binom-

e 8

ial with parameters (n ' e 0 , where 0 e 0 = (-0,w) . Then

2 ( = 2 and lim 02 (0) = 0

(1 + e 8 ±

However, it follows from Ghirschick and Savage (1951) that

X is admissible and, having a constant risk, it is minimax.

(b) Our condition (i) is more general than a similar con-

dition of Ping (1964), and also (ii) allows for the limit inferior

to be infinite (this is, actually, the case in many examples).

(c) It is interesting to compare conditions (i) - (iii) with

the sufficient conditions for admissibility (Theorem 1.2). While

the latter involve the behavior of a certain integral in the neigh-

borhood of both endpoints 0 and 0 , the former involve the
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behavior of the same integral and of another expression in the

neighborhood of one endpoint (T, say), and also a global condi-

tion, (i). This global condition is a kind of maximum principle

for the square of the normalized function h(M) = g(e) - m(8)e)

2.2. Examples

It is easy to see that Theorem 2.1 can be used to prove the

minimaxity of many classical estimators. For example, if

X1, X2 ,..., Xn are normally distributed with mean U and variance

1 , then, by using Theorem 2.1 (and simple changes of scale), it is

easy to check that

n
Sx.

(2.19) = n

is minimax in estimating the mean p with quadratic loss.

Some more examples of this kind are given in Ping (1964)

although his condition analogous to i) needs some special care.

We now describe two examples which are related to the estima-

tion of a function of the scale parameter in a Gamma density.

Example 1. Suppose that XIX 2 ,..., Xn are iid with exponential

density Ae-Xx I (0,)(x) where A > 0 . We want to estimate the

function

(2.20) g(A) = + X
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n

Since X = X. is a sufficient statistic for X , we can
i=l

consider estimators based on X . The density of X is Gamma

with parameters n and X

By changing the parameter to e = - , we get

(2.21) f (x) = (n) xn-I e I (x) , 0 < 0
e P(n) (o,-)

We claim that X is minimax in estimating g(O) n - + e
e

with the loss given by (2.2).

It is easy to see that the assumptions (i) '-(iii)' are

satisfied with h = e e/, . Expand e t/t as a power series:

et/t =1 + 1 + + _. + .... Then
t 2! 3!

tt k
(2.22) Ja - dt = log(-6) + k!k + c•t Xkk+

fa k=l

where c is a constant. Thus,

00 k
(2.23) lim info exp( ah(t)dt) = Yn ec lim exp( k- ) > 0

and so (ii)' is satisfied.

CD k
Also, since lim exp ( 1 ) , there exists eI < 0

sf0 k=l

such that for all 0, < 0 < 0 ,we have
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(2.24) exp f h(t)dt)d> (- )dO
fa fa fa

showing that (iii)' is satisfied. Finally, since h = - and

o = 0 , (i)' is also true and the claim is 
proved.

Example 2. In this example we consider X1, X2 , . .. , Xn normally

distributed with mean 0 and variance a2 > 0 The function to

2 202

be estimated is (n + 2)a
22a2 + 1

n 2 2
Since X = [ X. is sufficient for a ,we can restricti=l 1

our attention to estimators based on X . It is well-known that

n 2 22 1
Xi )/a is Xn If we denote by e then e < 0n~ 20 2'

and the density of X is

(-e) n/2 xn/2-l Ox(2.25) ff(x) r(n/2) e I (x).

Also m(0) = - 2 ' (0) = n2 , and
' _e 202

(2.26) g(9) = - l ] /)

With h = (1 - 6) , it is easily seen that conditions

(i)' - (iii)' are satisfied.
2 22

Thus X is minimax in estimating (n + 2)02 22
2a2 + 1
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CHAPTER 3

IMPROVING UPON THE BEST INVARIANT ESTIMATOR

IN MULTIVARIATE LOCATION PROBLEMS

In this chapter we consider the problem of finding estimators

which are better than the best invariant estimator 6_(X) = X ,

where X is a p-dimensional random vector whose probability den-

sity belongs to the location family: f0 (x) = f(x - e) , e E RP

We give sufficient conditions for the inadmissibility in di-

mensions p ? 3 of the best invariant estimator 6 (X) = X , ino

estimating the location parameter e with convex loss function

L(e,6(x)) = L(6(x) - ) In the particular case when the loss

function is

P
(3.1) L(6,6(x)) = [ ci(6i(x) - ei)2

i=l 1

where clc 2 .... c p are given positive constarns, and if we make

suitable assumptions about the moments of the density f(x - e) ,

we derive various classes of estimators which improve upon the best

invariant estimator 6 (X) = X

Our problem originates from Brown (1975) who proved that in

dimensions p 3 , the estimator 6 (X) = X is inadmissible in

estimating the mean e of a multivariate normal distribution (with
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covariance matrix the identity), under the loss function (3.1).

In Section 3.1 we generalize a result of Brown (1975) con-

cerning sufficient conditions for inadmnissibility. As appropriate

background we give a result of Brown (1966) concerning the inad-

missibility in dimensions p : 3 of the best invariant estimator

cS 0xM = X in estimating the location parameter 0 with loss

function (3.1). In Section 3.2 we prove that under suitable assump-

tions, the convolution of an estimator (S1 (which improves upon the

best invariant estimator 6 0X) = X outside of a compact set) with

a truncated probability density in FYP , gives an estimator 6

which is uniformly better than 6 0. The estimator 6 1 is of the

type 6 1 Mx = (U - a X , where a is a suitable constant (such
IX li

estimators are called James-Stein estimators). We also give sev-

eral examples of estimators obtained in this way, which improve

upon 60 . In Section 3.3 we derive some other estimators which

improve upon 16 0in higher dimensions. The critical dimension

for which we have an improvement upon 6 0depends on 61l the

latter being an estimator which improves upon 6 0outside of a

compact set and which is not of the James-Stein type.

Finally, we state some problems which were not solved in the

present context and which could be of further research interest.

3.1. The inadmissibility result

Suppose the density of X to be of the location type f(x e )

and consider the general loss function L(0,6(x)) =L(6(x) - 0)

By fflwe denote the Euclidean norm in JRP and [q] de-
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notes the largest integer not exceeding q

The key lemma which is proved below gives sufficient condi-

tions for the inadmissibility of 6 0 It is a generalization0

of proposition 1 in Brown (1975).

Lemma 3.1. Suppose that the following hypotheses are satis-

fied:

(i) L is a convex function;

(ii) there exists an estimator 61 , whose risk R(e,61)

is bounded on compact subsets of 3R1p

(iii) lim inf j1IqE[R(0,6 o ) - R(6,6 1 ) ] > 0 , for some q > 0

Then, for p -> [q] + 1 , the estimator 6 (X) = X is inad-
0

missible in estimating 0 with loss function L(6(x) - e)

Proof: Denote by A(e) = R(6,6 ) - R(, 6
1 ) and let

0 < a < lim inf lefl A(W) . Then, for some r > 0 , we havelltell

Ae) ? a/lellq , for l1el > r

Obviously R(6,6 ) = R (a constant) and, by (ii), R(e,6 1 ) B

for hellj - r (where B denotes a suitable constant). Thus

(3.2) A(e) -2 4(1ell)

where the function * is defined by:

R B if 0 ! t<r

(3.3) 4(t) =

a/tq , if t > r
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Now we use the "randomization of the origin" argument of Brown

(1975): denote by

(3.4) 6 (x) =T + 61(x - -1) T e IRp

observe that R(6,6 = R(e - T,6 , since e is a location

parameter.

The idea is now to consider T as a random variable (whose

distribution will be specified later) and, by taking

(3.5) 62 (X) = E [6 M)2r 1

to try to improve upon the risk of 60

A calculation using the fact that L is a convex function and

applying the Jensen inequality, gives:

(3.6) R(e,6 2) < E[R(e,6) I = E [R( - T, 61

Note that R(M,6o ) = E JR(e - ,6o)] , since we have
0 T 0

R(8 - T,60) = R(e,6 ) = R(0,60) Thus:
0 0 0

R(6,6 o ) R(,2 E [R( - T,6o - R(8 - -,6

(3.7) 2  T 0

E [A(O T ')J 1 E[.Ie

where E denotes the integral with respect to the probability

measure associated to the random variable T
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Now, choose T uniformly distributed in the ball with

center 0 and radius K in 3P

(3.8) B K(0) = {z e PRP / jzi) - K}

We show that a suitable choice of K > 0 will imply that

(3.9) E1[4(11e - 1jj)] > 0 , for all e EJR
p

This will prove the inadmissibility of 6 .0

We have:

(3.10) E010- aK~ (o-B~T+ -

where a = K- p  Volume B K(0)

Suppose that R - B < 0 since, otherwise, we are done.o

Observe that if 1181e > K + r , then:

(3.11) Et4(lie - -Il)] = f I a dt > 0
l~l<K

So, it remains to find K > 0 , such that, for Ilell 1 K + r

EL (116 - TI) I > 0

But, if Xp denotes the p-dimensional Lebesgue measure, we

have:



50.

(3.12) E[(II _ tI)> i [(Ro B) X (A) + a X(A 1 )]
S0KP (2K + r) q 1

where A = {TI 11-"II <5 K} n {Tf lit - 611 ! r) and

A {ft IItll ! K \ A Since

(3.13) A (A) + Xp(A1 ) = Xp(BK(0)) Kp

we can write:

(3.14) E[ (lle - III) ] >- [(R - B) A (A) + a (aKp - Ip(A))]
SK p  (2K + r)q

Clearly p(A) < crp  and we get:

E[ (11e - Tj) 1

(3.15)

S {[R -B - ] rp + aI p

0LKp o (2K + r)q  (2K + r )q

Since for p - [q] + 1 we have:

(3.16) lim {[R - B- a " + aaKp

(2K + r) (2K + r)q

the proof of the inadmissibility of 6 is completed.
o

Note. Observe that condition (ii) in the statement of

Leimia 3.1 is more general than the corresponding one in Brown (1975)

where R(8, 61) is required to be bounded on JRr'

In particular, our condition (ii) is satisfied whenever

Lii
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R(0,6 I ) is a continuous function of .

From now on, unless otherwise stated, we shall consider

the more particular loss function (3.1). Recall that X has

a density of the location type f(x - 0).

Denote by Z = X - e obviously Z has the density f(x)

which is independent of 0

We shall make the following assumptions:

(a) E(Z) = (E(Z 1), E(Z 2 ) ... ,E(Z)) 0

(b) E(Z.Z.) = 0 , for all i i j

Clearly, (a) is a mild assumption, which is necessary to show

that the best invariant estimator of 6 is 6 (X) = X .o

Assumption (b) combined with (a) states that Z. and Z.1 j

are uncorrelated random variables, for every i 7 j .

We shall now express the risk difference R(8,6 O ) - R(0,6)

where 6 is any estimator of 6 , in a special form. This cal-

culation, similar to the one in Brown (1975), is of fundamental

importance for all that follows.

Let 6 be any estimator; we have:

P 2 2A(e) = R(6,6) - R(e,6) = ci[E(Xi  - 0.) - E(6i(X) - Bi) 2 ]
0i=l 1 11

(3.17)
p
= ciAi(0)

i=l

and

Ae) = E(Xi - 6i(X))(X i + 6i(X)) - 2eiE(X i - 6i(X))
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Let h(X) = X - 6(X) and Z = X - 6 ; then:

A (8) = Eh (Z + 8)[2Z - h (Z + 8)](3.18) 1 1 1 i

= 2E[Z h (Z + 8)] - E[h 2 (Z + 6)]

By using Taylor's formula, we get:

(3.19) hi (Z + e) = hi (8) + Z h ij (e) + ei (6,z)

where hi (x) = - (x) and e. is an error term. Therefore

(3.18) becomes:

(3.20) Ai () = 2ah (e) + 2ya. hi (0) - E[h 2 (Z + e)] + e'(0)

where ai = E(Z i) , a.j = E(Z.Z.) , e-(8) = 2E(Zie.) . Note that

cX. and a. . do not depend on 8 , and also that, for the sake1 1.3

of generality, in this calculation we do not assume the condi-

tions (a) and (b) above.

By using again (3.19) and by rewriting the error term, we get:

(3.21) A (M) = 2a h (8) + 2ya h. (8) - h2 (0) + e(O)i i i i i"

Finally, by using (3.17), we obtain:

(3.22) A(B) = 21c a h (8) + 2 ci - cih2 (8) + e"(8)
1 i,j i

*w - - - . .. ... .. , . .- .. ..,, .. . ., ... . . ...,. . . ..... .. . .I
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This formula can be written as:

(3.23) A(6) = D(0) + e"(8)

where

(3.24) D(e) = 2Yciihi (6) + 2 1 ciai h. (0) - cih
2 (e)

i iJ i

Now, we can state the main result of this section. In the

following theorem and whenever we shall use this theorem, we

shall assume that the density f(x - e) satisfies certain moment

properties as described in detail in Brown (1966).

Theorem 3.1. Suppose that X has density f(x - e) , e E P

If the following conditions are satisfied:

(a) E0 (X) (E0 (Xl),Eo(X2 ) ... ,Eo(X)) = 0

(b) E0 (XX.) = 0 for all i $ j

(c) p 3

then the estimator 6 (X) = X is inadmissible in estimating 0

with loss function given by (3.1).

Proof: Note that in (a) and (b), E denotes the expected0

value when 0 = 0 (these hypotheses are the same as (a) and (b)

discussed before).

We shall use the calculation above. A discussion of the

error terms appears in Brown (1975); a more complete discussion

is given in Brown (1966). Since these apply to our case, we do

not repeat these calculations concerning the errors here.
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From formula (3.23) and from Lemma 3.1, it is enough to show

that

2

(3.25) lim inf jell D(e) > 0

for a suitable estimator 6(X)

Clearly, from assumptions (a) and (b), we have:

(3.26) D(e) = 2c iahii ii(0) - Icihi(O)
1 1

where a.1  E (X.) 2 E(Z.) = Var (Z.) does not depend on e
01 i 1

EX.
Consider the estimator 6. (X) = X. - 1for

1 1 ca. .11 X112

11 efIf2  - e 2

ifXff - 1 Then hi (  = ciai i  1f el 4  Therefore:

11e1 2  _ 22 2 02
iD(e) 2Zcia i ca - 1 c2a2c~ ~ ~ ii aI ii4 l

(3.27) 8 2

E2 [2p- 4e > 1
ei c.ai 2fef2

2

Now, since 2- 1 , if we choose

(3.28) 0 < c < 2(p- 2) min (cia 2

l i p 1

and, since p - 3 by (c), it follows that
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(3.29) fell 2 D(e) > [2p - 4 2 ] > 0
min c i a

Finally, lim inf I111 2 A(e) s(2p -4 - E 2 ) > 0
let min ciaii

and, thus, 60 is inadmissible.

Note. We ment'ion that Theorem 3.1 generalizes the original

result of Stein (1955) and it is included in the more general

inadmissibility result of Brown (1966). The point here is the

possibility that the components of X might be dependent (but

uncorrelated) and that we used the uniform distribution in Lemma

3.1. As we shall see in the next section, the latter argument

leads to possibilities of generalizations and to a wide class of

estimators which improve upon the best invariant procedure 6 0

We now give some examples where Theorem 3.1 can be applied:

Example 1. Consider X normally distributed with mean e

and covariance matrix a21 , where a 2 is known. In this case,

obviously, conditions (a) and (b) are satisfied. Thus, if p 2 3

the estimator 6 (X) = X is inadmissible. This is the classical

problem of estimating the mean vector of a multivariate normal

distribution.

Example 2. Consider X to be uniformly distributed in the

ball {x ,eR / lix - Oil ! RI In this case we have:

(3.30) f(x) = _
aRp {lxll!R}
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and, by using polar coordinates, it can be easily shown that

(a) and (b) are satisfied. This is the case of a spherically

uniform distribution. Minimax estimators, better than 600

were obtained in this case by Brandwein and Strawderman (1978).

Example 3. Consider the observation X having a density

of the form f(flx - 011) , e - :P . It can be shown, again by

using polar coordinates, that if

(3.31) I t p + I f(t) dt <

then conditions (a) and (b) are satisfied. In particular, any

truncated density (see the next section) will satisfy (3.31) and,

therefore, when sampling from such a density, the estimator

6 (X) = X is inadmissible, for p e 3

3.2. Improving upon the best invariant estimator

The problem of improving upon the best invariant estimator

6 (X) = X received considerable attention in the literature, but

estimators better than 60 are only known in special cases, such

as in sampling from a multivariate normal density, or from a spher-

ically symmetric density.

In the general case of a location parameter, let us observe

that Lemma 3.1 gives a family of estimators which improve upon 60

in terms of risk:

(3.32) 62 (X) 1 IT + 61(X - T)] d , K 2 K0
p o1(
cLKK

J2
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If we note that Td: 0 (by using polar coord-

inates in JRP ), we obtain:

(3.33) 62(X) 6 (X - T)dT , K 2 K

where 61 is an estimator satisfying the conditions of Lemma 3.1.

Formula (3.33) shows that the estimator 6 is obtained as2

the convolution of an estimator 61 which improves outside of a

compact set, with a suitable uniform density in RP .

The possibility of expressing estimators which improve upon

6 as a convolution, will be taken as the basis of further devel-

opments. An important step in finding wider classes of estimators

which are better than 6 , is to generalize Lemma 3.1. We do this0

below and, basically, this generalization shows that a wide class

of densities can be taken instead of a uniform density, to generate

estimators which improve upon 6 .0

We shall consider truncated distributions, whose densities

(with respect to the Lebesgue measure) are of the form:

J )c n( x112) , if lixilj : K
(3.34) (jlxii 2 ) = 10 , if ljxi > K

where K > 0 and

(3.35) c =- jxlj K n(Iixl 2)dx
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The following theorem generalizes Lemma 3.1. Note that we con-

sider again the general loss function L(6,6(x)) = L(6(x) - 0)

Theorem 3.2. Suppose the following hypotheses satisfied:

(i) L is a convex function;

(ii) there exists an estimator 61 ' whose risk R(6,6 1 )

is bounded on compact sets;

(iii) lim inf 1 E112 [R(0,6 -R(,6 > 0

(iv) sup f NI 2 dx < , for any r > 0

(v) lim (1/K 2 ) n(INI 2)dx
K-*oo IN IK

Then, the estimator defined by

(3.36) 6 2 (X) = c f 6 1 (X - T)n(Ij 2)dT

is better than the best invariant estimator 6 for K ! K

(where K is a sufficiently large constant).

Proof: The method of proof is similar to that of Lemma 3.1

and, by using the same notations, we get:

(3.37) R(0,6 ) - R(e,6 2 ) > E T[ (e - l)]

We choose the random variable T distributed with density

as given by (3.34), so that:
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R(0,6 o) - R(0,6 2 )

(3.38) I ____

3cL Jl_ T 1!r (R - B)n(II )dt + liea -[1(12 Il ) dt:

fltl fl-TI >r

Consider Ilell < K + r since, otherwise, we are done. We

obtain:

R(0,60) - R(, 2)

(3.39)2+ 2
> c[R- B - a )dT + a

0 (2K + r)_ r c(2K + r) 2

Finally, by using hypotheses (iv) and (v), we show that the

right-hand side of (3.39) goes to - as K - , which concludes

the proof.

Observe that 62 is obtained from 61 by a randomization of

the origin. Since:

(3.40) T ( )dt = 0

we get formula (3.36), providing an estimator 62 with smaller

risk than 6

Again, the estimator 62 is the convolution of the estimator

61 (which improves upon 60 outside of a compact set) with a trun-

cated density of the type (3.34).

We give now some examples which, according to the choice of

the density E , describe various classes of estimators improving

upon 60

• . .. .. . . . . . . . . . . . . . . .. . . . ... . . ... , , , , , , -0. - , i
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Example 1. If we take n(ijxjI 2 ) : 1 in the definition

of , then (iv) is obviously satisfied, while (v) is satis-

fied for p _ 3 In this particular case, we obtain Lemma 3.1

with q = 2

Estimators which improve upon 6 are given by:

(3.41) 62 (X) _ 1 p 6 1 (X - T)dT , K >ctK o

and we recognize again formula (3.33) (i.e., convolution with a

uniform density).

Example 2. Consider n(jjxjj 2 ) = 1/lx,12 By using polar

coordinates in ]Rp , we observe that condition (v) is satisfied

for p _> 5 (see also remark (1) below).

We can also prove that cordition (iv) is satisfied:

(3.42) sup - - dx < , (V) r > 0

y R 
p  ik r I, +  12

To see this, perform a change of variables, by applying the

p x p orthogonal transformation T , such that

T(y) = (fyI,0, ... 0) We get

(3.43) / 1 dx= 2 1 2 2 dx

I~x 1x INIyr (xI  lYlyl) + x2 2 ... + x

Then, transform (x2 ,x3 ..... x) into spherical coordinates:
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x =u

x2 = p cos 2

(3.44) x3 = p sin 2 Cox 3

Xp p sin .2 sin p-

where 4 2..... 4 p-2 E _, Ep [0,27] , and p E [O,r]

After this transformation, (3.43) becomes:

f rf-Tr (-pJ pP-2
(3.45) ()2 + dudp

0 % 2_p2 + u) + P

where Q is a constant.

After some simple calculations, this expression simplifies to:

r [ 1  
2 VII +-V7 2r 2 -2

(3.46) pp-3 [tan- - tan 1  - - dp
Qf0P P

Since -i1/2 < tan-1 a < ir/2 , we observe that the integral in (3.46)

is bounded by a constant depending only on r . This shows that

condition (iv) is satisfied.

The class of estimators which improve upon 6 is given by:
0

fkll 6l (x'-r)

(3.47) 62(X = c dT K > K
2 k 2I K I1TI

where c is a constant of the order I/K -2

Example 3. To generalize the previous example, we take

i-____ . .. ........... .. .... :11-4- j w, "
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S(11x112 =1/11 xjj s with s > 0 and we consider the corres-

ponding truncated density given by (3.34).

Without repeating the calculation which is similar to that

in Example 2, we mention that classes of estimators better than

6 are obtained in higher dimensions. More exactly, the critical
0

dimension for inadmissibility depends on s the estimators

(3.48) 62(X) = c dT , K KJf •f tK If rU -

have smaller risk than 6 (X) = X , for p > s + 3 Here c is0

a constant of the order 1 /K
p - s

Remarks. (1) Observe that condition (v) of Theorem 3.2 can

be stated in the equivalent form:

(3.49)[ tp - I I(t 2) dt = and lim tp - 2 n(t2 ) =
f 0 t.0

This can be proved by using polar coordinates.

(2) In the proof of Theorem 3.1, the estimator 61 which

improves upon 6 outside of a compact set, is explicitly given.

By using this and Theorem 3.2, we can give a more explicit form

for the estimator 62 , which is uniformly better than 6o

Consider X an observation from the density f(x - 0) and

suppose that the hypotheses of Theorem 3.1 are satisfied. The loss

function is given by (3.1), where we assume for simplicity that

ciaii = Q = constant, for all i = 1,2,...,p

Then the estimator 61 becomes:

!1

-ll-n -.--.. .....-.- .... .
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(3.50) 6 1 (x) = (1 - ) X

QIIXII

If we consider the "convoluting" distribution to be uni-

form in the ball with radius K , it can be easily shown that

(3.36) becomes:

(3.51) 62 (X) = X - E f -Y dy
QaK fy-x11 K IMI

This estimator is better than 6 if K K . The constant

K depends (as it can be seen from the proof of Lemma 3.1) ono

various other constants, such as Ro , 5, a, p . We can take

(3.52) a = [2p - E mQ min a.
i ii

with 0 < c < 2(p - 2) Q min a 1 , and we take K , such that:

(3.53) Kp - rp + rp (R - B)(2K + r) 2/a > 0

In specific examples, the constants R , B can be calculated,

or replaced by some appropriate bounds.

Formulae analogous to (3.51) can be obtained by using other

truncated distributions, such as those given in the examples above.

3.3. Further developments

It is possible to extend the results of previous sections and

to describe other classes of estimators which improve upon

(x) = x
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Consider X having a density of the location type f(x - 6)

and consider the loss function (3.1) where, for simplicity,

we assume that ciaii = ci Varo(Xi ) = Q (a constant), for all

i = ,2,...,. .

We assume that the hypotheses of Theorem 3.1 are satisfied.

Without loss of generality, we can take ca = , i =1,2...p

Theorem 3.3. If we denote by

(3.54) 6I(X) = (i - ) x

with s > 2 and E > 0 , then

(3.55) 6(X) =
l1K6 1 (X - y)dy , K K

is a better estimator than o(X) = X , in dimensions p > s

Proof: With the notations of Section 3.1 we have:

(3.56) D(e) = 2h ii(e) - ci h (G)
1 1

A simple calculation gives:

(3.57) h (0) 2 "lells - sel s-21
11112s
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Therefore, we obtain:

-2 2D(e) = 2 2s £11611 s se2 s-2]

2s-sei lll - [c. 2

(3.58) 
2

i ,1 2sS_ _ E
XloIl s IlellI si Iel

Since c. < A for all i = 1,2 ,...,p , where A is a1I
constant, we get:

2

(3.59) D(e) > 2e (P - s) f 2 A

Therefore:

2A

(3.60) Ilell s  D(6) 2E(p - s) -

1I1 s-2

Since s > 2 , it follows that:

(3.61) lim inf ]1ll s D(6) 2 2e(p - s) > 0
lleII--

for p > s and e > 0 , by applying Lemma 3.1 with q = s . This

ends the proof.

Note. Observe that in the case s > 2 we need c > 0 , but

c is otherwise unrestricted.

If s = 2 , by looking at the proof above, we see that we need

0 < c < 2(p- 2)/A

If 2 < s < 3 we get better estimators in dimensions p z 3

-
. . ... "
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otherwise the improvement upon 6 0X W X is obtained in high-

er dimensions.

From the results of Section 3.2 and 3.3 it is clear that

estimators 6 2 which improve upon the best invariant estimator

6 are obtained as the convolution of some estimator 6 1which

improves upon 6 0outside of a compact set, with a suitable pro-

bability density in JRP

(3.62) 6 2 1

An interesting problem would be to study and, if possible,

to characterize the following class of densities in R

(3.63) D = {E/R(e,61 *) < R(0,60) , vegRP

Note that V contains suitable normal densities (see Brown

(1975)), as well as spherically uniform densities, and truncated

densities with properties (iv) and (v) in Theorem 3.2.

A characterization of V would be useful in order to find

wider classes of estimators which improve upon the best invariant

procedure 6 0XW = X

An interesting problem, closely related to this, is whether

any estimator which improves upon 6 0can be written as a convo-

lution of some estimator which improves outside of a compact set,

with a suitable p-dimensional probability density.

The answer at these problems, which is not known even when

sampling from the multivariate normal distribution, would possibly

give a better understanding of the structure of estimators which

&j
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improve upon the classical, best invariant procedure.
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